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[1] Millennial timescale variability in the North Atlantic Ocean circulation is often
discussed in terms of concepts that are rooted in the dynamics of simple, low-dimensional
box models. In this study we discuss possible explanatory mechanisms for the millennial
timescale oscillations of the North Atlantic Thermohaline Circulation that have been
revealed by the Greenland ice core record for the late glacial period. We subject three
qualitatively different low-order models to stochastic and sinusoidal perturbations: (1) a
bistable model, (2) a model with a single stable equilibrium point and a single stable
periodic orbit (limit cycle) corresponding to a collapse-flush cycle in the North Atlantic
circulation, and (3) a model with a single globally stable equilibrium point which
nevertheless exhibits complex behavior when perturbed. We discuss both the physical
nature of the model response and its parameter dependence. We conclude that the
traditional definition of stochastic resonance should be expanded and that the temporal
characteristics of the noise terms should be considered an integral part of model
construction, as they profoundly affect the efficacy of a given explanatory mechanism.

Citation: Stastna, M., and W. R. Peltier (2007), On box models of the North Atlantic thermohaline circulation: Intrinsic and extrinsic
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1. Introduction

[2] It is well known that isotopic analyses of the Summit,
Greenland ice cores [i.e., GRIP members, 1993; GISP2
members, 1993] reveal millennial timescale oscillations in
atmospheric temperature during Oxygen Isotope Stage 3, a
period of the most recent glacial period, 60–35 kya BP
(1 kya = 1000 annums, BP is before present). These
oscillations can exceed one half of the glacial-interglacial
temperature change in amplitude. Inspection of these time
series also reveals a saw-tooth modulation of the oscillations
with a characteristic timescale of the order of 10 kya. In the
following we will refer to the individual millennial time-
scale oscillations as D-O (Dansgaard-Oeschger) oscillations
and their modulation as the Bond cycle [Bond et al., 1993].
[3] It has been hypothesized that the D-O oscillations are

intimately linked to changes in the strength of the North
Atlantic thermohaline circulation (henceforth the NATHC),
and that these changes are driven, in large part, by changes
in the hydrological cycle, namely by variations in freshwa-
ter flux delivered onto the surface of the ocean at high

latitudes. The recent review by Broecker [2003] discusses
both the evidence (based on ice and sediment cores) for this
point of view, as well as the evidence for an alternative
point of view that asserts the primacy of the tropical ocean-
atmosphere system in driving millennial timescale climatic
change, including changes in the NATHC. We will assume
the former point of view throughout the following. The
question then becomes how best to study the NA THC on
relevant timescales. To date, a coupled ocean-atmosphere-
ice sheet-land surface process general circulation model
(GCM) study on timescales relevant to millennial timescale
climate variations has not been possible. In the place of such
a study a variety of reduced models, sometimes referred to
as Earth System Models of Intermediate Complexity
(EMICS), spanning a wide range of complexity and utiliz-
ing a variety of techniques, have been employed. At one end
of the complexity spectrum are ocean circulation models
coupled to simple atmosphere and sea ice models [Brix and
Gerdes, 2003; Rahmstorf, 1995]. At the other end are low-
order, conceptual models, generally involving a small
number of nonlinear ordinary differential equations. Exam-
ples include the well-known Stommel two-box model (both
in its original form [Stommel, 1961] and as developed by
Cessi [1994]) and the three-box model of Sakai and Peltier
[1999]. These twomodels are schematized in Figures 1 and 2,
respectively. Other examples will be discussed at appropri-
ate points in the text The model discussed by Sakai and
Peltier [1999] was developed with an eye to reproducing the
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results of zonally averaged, multibasin models [Sakai and
Peltier, 1997] in so far as their essential properties are
concerned. The results of these multibasin model investi-
gations suggested that the NATHC would be expected to be
in a stable, time-independent state for high-latitude fresh-
water flux appropriate to modern conditions. However, for
larger values of the high-latitude freshwater flux, this
equilibrium point was shown to be replaced by a periodic
orbit (or in other words the equilibrium point undergoes a
Hopf bifurcation). Thus for high enough values of the
freshwater flux the NA THC would undergo oscillations
(corresponding to trips around a periodic orbit in phase
space) that would continue even if the freshwater flux
remained constant for subsequent times. This is in marked
contrast to the two stable equilibrium points of the Stommel
model in which variability requires external forcing and the
NATHC tends to one of the two stable equilibrium points as
soon as the forcing becomes time independent.
[4] The literature on the various spinoffs and extensions

of the Stommel model is vast and it is not our intention to
survey it here. However, one example worth mentioning is
that which includes interhemispheric communication. Such
a box model was first discussed by Rooth [1982]. Inter-
hemispheric interactions are largely believed to behave
according to the see-saw hypothesis [Broecker, 1998;
Stocker, 2002] which asserts that a decrease in the intensity
of the NA THC (i.e., due to a decrease of deep water
production in the Greenland and Labrador Seas) will lead to
an increase in the intensity of the SA THC (i.e., deep water
production in Antarctic waters) and vice versa. The see-saw
hypothesis is an active research area, see, for example, the
box model work by Siddall et al. [2007] and the challenge
to the see-saw hypothesis by Seidov et al. [2005] on the
basis of numerical experiments with a fully coupled GCM.

As such, a detailed comparison of results discussed in the
present with a corresponding study of a simple model of the
see-saw type is a clear avenue for future research.
[5] In this paper we aim to address some aspects of low-

dimensional dynamical system models of the NA THC. In
particular we will focus on two competing explanations of
millennial-scale variability of the NA THC, alternative
explanations that find expression in models in this class.
We will contrast systems for which time-dependent behav-
ior is intrinsic, for example, through the existence of stable
periodic orbits (limit cycles) produced by Hopf bifurcations
of stable equilibrium points as parameters are varied, with
systems for which time-dependent behavior is extrinsic,
such as systems exhibiting stochastic resonance under a
combination of sinusoidal and stochastic perturbations.
[6] We will focus the discussion herein on two models,

namely the modification of the Stommel two box model as
discussed by Cessi [1994] and a slight generalization of the
three-box model due to Sakai and Peltier [1999]. We avoid
discussion of models with a delay [i.e., Kurtze and
Restrepo, 2001] since a delay greatly complicates the
governing mathematics (indeed a single ordinary differen-
tial equation with delay is equivalent to an infinite system of
ordinary differential equations without delay [Elsgolts,
1966]).
[7] The layout of this paper is as follows. After a

discussion of the modeling and simulation methodology,
we begin by discussing stochastic perturbations of the

Figure 1. Schematic of the Stommel two-box model. The
model does not evolve individual salinities and tempera-
tures, only their differences. In the majority of applications,
including this study, the temperature difference is clamped
to a constant value.

Figure 2. Schematic of the generalized Sakai and Peltier
model. Salinity in each box diffuses between boxes and a
larger ‘‘background’’ box or ‘‘bath.’’ The thermohaline
circulation is modeled by a unidirectional (possibly non-
linear) transport of salinity from box 1 to box 2 to box
3 superimposed onto the diffusive exchange. The transport
only occurs if the salinity in box 2 is larger than the
background salinity. In box 2 varying amounts of mixing
are assumed to occur during deep convection. In work by
Sakai and Peltier [1999] the mixing with box 3 is complete,
while in the ‘‘transport’’ model discussed in the present no
mixing occurs.
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version of the Stommel two-box model developed by Cessi
[1994], henceforth referred to as C94. With an observation
made in C94 as a starting point, we develop an elementary
model for noise that is not white in time (i.e., has some
memory) and outline several consequences of this memory.
Further, we employ the Stommel model to develop an
example of stochastic resonance. We next turn to a discussion
of models with intrinsic variability (i.e., stable limit cycles).
Using the three-boxmodel developed by Sakai and Peltier we
show how noise can destabilize an equilibrium point and lead
to quasiperiodic behavior. Finally we utilize a variant of the
Sakai and Peltier model to show that, contrary to one’s
intuition, stochastic resonance is possible in a system with
a single, globally stable equilibrium point. However, the
stochastically enhanced response in this case is richer than
the traditional definition of stochastic resonance.
[8] A common thread throughout these discussions is the

role of the temporal characteristics of the stochastic pertur-
bations. While the vast majority of the mathematical liter-
ature on differential equations with stochastic terms
concentrates on the case of white noise under the Ito
interpretation [Kloeden and Platen, 1992], noise that has
memory profoundly affects the regions of parameter space
in which phenomena such as stochastic resonance can
occur. For this reason we suggest that the noise memory
should be treated as part of the model construction process
as well as in evaluating the efficacy of any one particular
explanatory mechanism.
[9] We utilize the relevant box models in question in

dimensionless form, however the physical assumptions and
limitations of each model are discussed at the beginning of
section 2. In the conclusions section we discuss questions
relating to the appropriateness of each of the models as
descriptions of millennial scale variability of the North
Atlantic. We offer criticisms of each of the various possible
scenarios and integrate the present results into the literature
on D-O oscillations.

2. Methodology

[10] Box models replace the complex dynamics of the
ocean with a small number of communicating boxes, each
with a well defined state (salinity and temperature, for
example). We assume the reader is familiar with the idea
behind box models (see, for example, the discussion by both
C94 and Sakai and Peltier [1999]).
[11] The Stommel two-box model (see Figure 1 for a

schematic), which we shall consider in the form presented in
C94, consists of a low-latitude and a high-latitude box
coupled by a nonlinear exchange function between the
two boxes. The northern box is assumed to be forced by
an excess of precipitation (negative salinity anomaly) while
the southern box is forced by an excess of evaporation
(positive salinity anomaly). There is no background pool of
water and no assumed direction for the transport in the
system, beyond that given by the choice of the mathematical
form of the nonlinear exchange function. The three-box
model due to Sakai and Peltier [1999] (see Figure 2 for a
schematic), in contrast, has both a diffusive exchange with a
background pool of water and an inherent transport direc-
tion, provided the THC is turned on: northward in the low-
latitude surface box, sinking in the high-latitude box and

southward in the abyssal box. It is important to note that, as
presented by Sakai and Peltier [1999], the model assumes
two types of mixing. The first is given by diffusion between
the boxes (as well as a larger ‘bath’), while the second
parameterizes the mixing that occurs during deep convec-
tion events. Indeed, as presented by Sakai and Peltier
[1999], the model assumes that THC-transported water
leaving the high-latitude sinking box has the same salinity
as the water in the abyssal box. We shall weaken this
assumption, and discuss the relevant mathematical devel-
opment below. Physically, we find that a cessation of
mixing with the abyssal waters during deep convection
leads to a model with a single stable equilibrium. This is
in better agreement with recent numerical experiments
performed with a fully coupled GCM [Peltier et al.
[2006] for anomalous freshwater forcing experiments of a
modern climate. It is, however unclear whether the results
for a modern climate should be extrapolated to the glacial
climate, especially considering the suggestion made by
Sakai and Peltier [1999] that the increase in steady fresh-
water flux onto the high-latitude North Atlantic maintains the
glacial thermohaline circulation in a state perilously close to
shutdown. As mentioned above, the Stommel model is
schematized in Figure 1, while the generalized Sakai and
Peltier model is schematized in Figure 2. The relevant
mathematical equations are discussed in detail below.
[12] It is possible to systematically reduce the three-box

model to the Stommel model via the following sequence of
steps. First, eliminate the equation for the salinity of the
abyssal box, by considering only the salinity of a high-
latitude box and a low-latitude box, where the latter is now
assumed to subsume the background pool and the original
low-latitude surface box. Next reinterpret the transport and
mixing functions as ‘exchange’ functions. Finally consider
only the salinity difference between the two boxes. While
the two models are thus formally similar, the Stommel
model has the advantage of a smaller set of parameters,
while the Sakai and Peltier model is more faithful in
representing the unidirectional nature of the THC (at the
cost of a larger number of parameters).
[13] The stochastic problems discussed in the following

are formulated in terms of ordinary differential equations
subjected to additive stochastic perturbations, as in

dy

dt
¼ f y; tð Þ þ x; ð1Þ

where y(t) is the variable one wishes to solve for and x
represents the noise. There is a considerable literature on the
mathematics, approximation and numerical solution of such
equations [Kloeden and Platen, 1992; Ottinger, 1996;
Gardiner, 1990]. Two divergent approaches are possible.
The so-called Langevin approach, adopted in the following,
considers individual integrations of (1). It requires an
appropriate numerical method for the stochastic differential
equation (applying standard techniques for ordinary differ-
ential equations such as the Runge-Kutta method gives
erroneous results) and a reliable generator for the stochastic
perturbation. In the following we apply the Milstein method
[Ottinger, 1996] for the discretization of the stochastic
differential equation and the Mersenne Twister algorithm
[Matsumoto and Nishimura, 1998] to generate realizations
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of the stochastic perturbation. The algorithm employed is
order Dt in time in both the deterministic and stochastic
parts of the governing equation and converges strongly
[Ottinger, 1996]. The strong convergence implies we can
make mathematically valid conclusions on individual paths,
an essential property when discussing stochastic resonance.
The Mersenne Twister algorithm allows for the rapid
construction of large ensembles while maintaining con-
fidence in the temporal characteristics of the stochastic
perturbations. Signal to noise ratio values are computed
from a projection onto the driving Fourier component.
When necessary, full power spectra are computed via the
FFT. A variety of spectral estimation techniques (window-
ing, multitaper method) were tried. The results reported in
the following (being qualitative in nature) were found to be
insensitive to the choice of spectral estimation method.
[14] The second approach to stochastic differential equa-

tions forgoes the individual paths of the Langevin approach in
favor of a partial differential equation (the so-called Fokker-
Planck equation) governing the probability density. Under
certain mathematical conditions [Ottinger, 1996; Gardiner,
1990] the two approaches are equivalent. However, in many
instances, the former approach is preferable from a compu-
tational viewpoint (see the discussion by Ottinger [1996]).
The second approach is well described in the monograph by
Gardiner [1990], and has been utilized to study a version of
the Stommel box model by Timmerman and Lohmann
[2000], in an article that we shall discuss below.

3. Stommel Two-Box Model

[15] We follow C94 and we can write the Stommel two-
box model in dimensionless form as

dx

dt
¼ %a x% 1ð Þ % x 1þ m2 x% yð Þ2

h i

dy

dt
¼ p tð Þ % y 1þ m2 x% yð Þ2

h i

; ð2Þ

where x and y are temperature and salinity differences
between the low-latitude and high-latitude boxes which are
assumed to make up the North Atlantic, a and m are
physical parameters (the former sets the strength of
temperature restoring, while the latter sets the strength of
the exchange flow between the two boxes) and p(t) is a
known forcing function. We adopt the parameter values of
C94, namely m = 2.49 (or m2 = 6.2) and a = 3600. The
large value adopted for a allows one to essentially drop x
from consideration as x = 1 + O(a%1). In the literature [i.e.,
Velez-Belchi et al., 2001], there has been some discussion of
this point, with the alternative value a = 360 being
suggested. We have tested a range of a values, including
those mentioned above, and have found that the two
equation model can be quite safely reduced to the one
equation model for all discussions herein. As discussed in
C94, the single equation model can be interpreted as
governing the inertia-less motion of a particle in a double-
well potential. Following C94 we write

dy

dt
¼ %y 1þ m2 1% yð Þ2

h i

þ pþ p0 tð Þ ð3Þ

and take p = 1.1. The time-dependent perturbation p0(t) can
consist of both deterministic and stochastic components.
[16] One of the most interesting findings reported in C94

is the response of the system to piecewise constant pertur-
bations. The numerical experiments proceed as follows:
start at the stable equilibrium point that corresponds to the
global minimum of the potential (which we label as ya &
0.24), impulsively increase p0(t) to a fixed value D, hold p0

at this value for a time t and then impulsively decrease back
to 0. The idea is to find the minimum value of D that will
lead to a transition to the shallower potential well (with
local minimum at yc & 1.1) for a given value of t. Cessi
reports (and we have confirmed) that as t increases from
zero D falls rapidly at first, but then asymptotes to a
minimum value D0 & 0.2 below which no transition occurs
regardless of how large t is.
[17] The implications of this result are manifold. One

particular example is given in Figure 3. In Figure 3 we show
the response to perturbations of the form p0(t) = asin(2ptT ).
We fix a and vary T. Note immediately that only the longest
period perturbation shown leads to a transition between the
two potential wells. A secondary point to note is the fact
that when transitions between the potential wells do occur,
they are phase locked to the sinusoidal perturbations
(though the y versus t curve is not sinusoidal).
[18] Having established the above, we henceforth consid-

er p0(t) to be stochastic. Following C94 we discretize the
governing equation by the Millstein method (note that for
the additive noise cases we discuss this is equivalent to the
Euler method, but maintains the O(Dt) convergence
[Ottinger, 1996]) and generate a Gaussian perturbation with
variance s2 at each time step (in other words white noise).
In Figure 4 we show the probability distribution of y,
computed by binning the time series. The two minima of
the unperturbed potential occur near 0.25 and 1.1. The
agreement of the solid curve with Figure 6 from C94 is
excellent. The time series of y corresponding to Figure 4
consists of irregular oscillations around the two local
minima with occasional transitions between the two poten-

Figure 3. The y versus t curves for Stommel two-box
model subjected to purely sinusoidal perturbations. The
amplitude of the perturbations is fixed while the period, T,
varies. Transitions between the two stable equilibria occur
only for perturbations with a long enough period.
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tial wells. For the solid curve the standard deviation, s =
0.2p while for the dashed curve s = 1.0p. It is clear from the
figure that the stronger noise case smears the probability
distribution, in the sense that the distinction between the
two potential wells is decreased and the region of nonzero
probability density is extended.
[19] A natural extension of the results in C94 can be

summarized in the following question: What happens if
instead of generating a random perturbation at every time
step we do so at only every 10th or 100th time step, holding
the perturbation constant between switches. The idea is
perhaps best illustrated with an example. Consider a series
of 30 random integers between 0 and 9, 2383912078
4938576104 7492741006, with a space included after ever
ten digits. For the random perturbations at every 10th time
step we would have the following sequence of numbers,
corresponding to the above, 2222222222 4444444444
7777777777, again with a space included after every ten
digits. In other words the noise used is no longer white in
time, but has perfect memory for 10 (or 100) time steps, and
then loses all memory. Indeed from a physical point of view
it is not likely reasonable to expect freshwater forcing of the
NA to be a white noise process and the above can be
interpreted as a particular form of fading memory (such as
that used in linear viscoelasticity [Pipkin, 1986], for exam-
ple). In Figure 4 we show results corresponding to s = 0.2p
but with the stochastic perturbation held fixed for 10 time
steps (corresponding to a perfect memory of duration
0.001). As an aside, we note that the same random vector
is used to produce all curves in Figure 4. Note that this
means that for the dash-dotted curve we use only every 10th
entry of the random vector. The reader can readily confirm
that increasing the temporal memory of the noise, while
keeping s fixed leads to a greater smearing of the proba-
bility distribution than keeping the temporal characteristics

white and increasing s fivefold. The converse of this result
is that with a nonwhite noise forcing applied to the system it
is possible that a probability distribution like that of the
solid curve in Figure 4 is obtained for much smaller values
of the variance. The present results imply that when
specifying a low-order model of the North Atlantic circu-
lation that includes a stochastic component, a discussion of
the memory of a stochastic perturbation is just as important
as a discussion of the values of the physical parameters (the
exchange functions between the two boxes, in the present
context).
[20] The mathematically inclined reader will note that the

type of memory outlined above renders the discretized
differential equation non-Markovian. One important conse-
quence of this fact is that there is no correspondence
between the Langevin-type equation we integrate numeri-
cally and a Fokker-Planck equation for the probability
density function. We have reproduced all relevant simula-
tions using a Markovian red noise generated by an exten-
sion of the Box-Müller algorithm [Bartosch, 2001]. In the
Markovian red noise case it is possible to reach similar
conclusions to those discussed below using the appropriate
Fokker-Planck equation. We have found no qualitative
difference between the red noise results and the results
employing the intuitive form of memory presented in the
above and hence we will report results based on the latter
only.
[21] For the Markovian red noise case the problem can

be considered from the Fokker-Planck equation point of
view. Indeed this has been done for a Stommel-type, two
box model with multiplicative noise by Timmerman and
Lohmann [2000] and interpreted from the point of view of
catastrophe theory. The agreement with the present study is
quite good; for example, compare our Figure 4 with
Figures 6 and 7 of Timmerman and Lohmann [2000].
The advantage of the Fokker-Planck approach lies in its
ability to find closed form expressions (albeit approximate)
for the probability distribution [Timmerman and Lohmann,
2000, equations (33) and (34)]. In contrast, the Langevin
equation approach employed in the present has the advantage
of a transparent, highly parallelizable numerical implemen-
tation that, crucially, yields so-called strong approximations
of the actual solution paths and applies both for cases with
nonMarkovian noise and situations which combine deter-
ministic and stochastic perturbations.
[22] We next turn to a discussion of stochastic resonance

(SR) in the system (3). SR has received a great deal of
attention in the literature [Rahmstorf and Alley, 2002;
Ganopolski and Rahmstorf, 2001] as a possible explanatory
mechanism for NA THC variability on millennial (and
longer) timescales. The basic idea of SR (discussed in much
greater detail by Gammaitoni et al. [1998]) is that a
nonlinear system can exhibit strong response at a forcing
frequency when noise is present even if the response to the
same periodic forcing without noise is weak. We take the
forcing p0(t) to be given by

p0 tð Þ ¼ a sin
2pt
T

! "

þ p00; ð4Þ

where p00 is stochastic. In Figure 5 we show three
realizations of y versus t with the same initial conditions,

Figure 4. Probability density function for y in the
Stommel two-box model subjected to stochastic perturba-
tions: solid line, white, Gaussian noise perturbations s =
0.2p; dashed line, white, Gaussian noise perturbations s =
1.0p; dash-dotted line, perfect memory for t = 0.001 (or
noise held fixed for 10 time steps) with no subsequent
correlation, Gaussian perturbations s = 0.2p.
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sinusoidal forcing amplitude and period (a, T) = (0.15p,
40.0) and varying strength of stochastic forcing. The value
of s is chosen as: 0.004p for Figure 5a, 0.4p for Figure 5b
and 2.0p for the Figure 5c. The noise is white in time. From
figure 5 it is clear (even to the naked eye) that the Figure 5b
experiences the largest response at the forcing frequency.
When the noise is weaker the transitions from one potential
well to the other are rare (indeed do not occur over the time
period shown). Of course, in the limit of no noise transitions
do not occur at all. For strong noise (comparable to p in the
case of Figure 5c) the evolution of the system is completely
dominated by the noise. Similar results to Figure 5 can be
produced for other choices of memory for the stochastic
noise.
[23] To discuss SR quantitatively we must define a signal

to noise ratio (SNR(w0, a, s)) which measures the ratio
between the strength of the output signal at the forcing
frequency and the strength of the noise. There are a variety
of ways to define signal to noise ratio [Gingl et al., 2001].
In the following we employ

SNR ¼ PSD w0ð Þ
s

; ð5Þ

where PSD(w) is the power spectral density at a given
frequency, w, and w0 = 2p/T. We have tried several other
definitions of the signal to noise ratio and found no

qualitative change in the results presented in what follows.
Figure 6 shows two signal to noise ratio versus s/p curves
for (a, T) = (0.15p, 40) and noise held 5 or 10 time steps,
computed from a time series of 107 time steps. While both
signal to noise ratio curves exhibit the sharp peak
characteristics of SR, the location of this peak shifts from
approximately s = 0.07p to s = 0.12p. This implies that, for
a sinusoidal perturbation of fixed amplitude and period and
stochastic perturbation with a fixed magnitude (or in other
words, variance), the temporal characteristics of the
stochastic perturbation exert a great deal of influence on
whether stochastic resonance can take place in a physically
meaningful parameter range. In particular, the usual
interpretation of stochastic resonance in the literature asserts
that even weak noise can lead to phase locking with the
driving sinusoidal perturbation. Of course even if a
reasonable model of the temporal characteristics of the
noise was available a physical mechanism for the sinusoidal
perturbation would need to be outlined.
[24] Finally, we note that SR in the context of the

Stommel two-box model has been discussed by Velez-Belchi
et al. [2001], however the numerical method employed is
not clearly described in this paper. As most of the literature
on stochastic differential equations makes the assumption of
a stochastic perturbation that is white in time and Gaussian,
we assume Velez-Belchi et al. [2001] make this choice. For
such a choice, the above results suggest that the amplitude

Figure 5. The y versus t curves for Stommel two-box model subjected to both stochastic and sinusoidal
perturbations. The two stable equilibria in the unperturbed case are indicated by dashed lines. Both the
amplitude, a, and period, T, of the sinusoidal forcing are fixed, and the standard deviation of the noise, s,
increases from top to bottom. In Figure 5a, no transitions occur; in contrast, Figure 5b exhibits transitions
between the two stable regimes with the strongest phase locking to the driving frequency, while Figure 5c
is almost completely dominated by noise.
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of the stochastic perturbation would need to be unphysically
large.

4. Generalized Sakai and Peltier Model

[25] The Sakai and Peltier model is a three-box model,
with x, y and z representing the nondimensional salinity
anomalies, or in other words the differences of salinity
between a large background box (or ‘bath’ in the language
of thermal physics) and midlatitude surface, high-latitude
and midlatitude abyssal boxes, respectively. The model
involves five parameters: X and Y represent the midlatitude
evaporation and high-latitude freshening, respectively, m is a
diffusion parameter, b sets the degree to which the THC
transport is nonlinear and m can be thought of as a
parameter for mixing in the high-latitude box during deep
convection. In nondimensional form the model reads

dx

dt
¼ X % xþ my% H yð Þybx

dy

dt
¼ Y % 2yþ m xþ zð Þ þ H yð Þyb x% yð Þ þ m y% zð Þ½ (

dz

dt
¼ %zþ myþ H yð Þyb y% zð Þ; ð6Þ

where H(p) is the Heaviside step function. The presence of
H(y) in (6) implies the transport terms, due to the THC, turn
off if y < 0. The strength of the transport is set by yb, a
function of the salinity anomaly in box 2, and varying b
amounts to making a different choice for the exchange
function (various choices are given by equation (2.4) of
C94). There is no transport into box 1, but a transport of the
salinity anomaly x out of box 1 and into box 2. There is
transport into and out of boxes 2 and 3. Setting m = 1
reduces the system (6) to the model extensively analyzed by
Sakai and Peltier [1999] and referred to henceforth as the S
and P model. In this case the water transported out of the

high-latitude sinking box is assumed to possess a salinity
equal to that found in the abyssal box (presumably owing to
mixing during deep convection events). The opposite limit
m = 0 corresponds to the case of no mixing during the deep
convection events (the salinity of water entering the high-
latitude box via THC transport equals that leaving it), and
will be referred to in the following as the transport model.
Note that the 2 in the %2y term in the evolution equation for
y is carried over from Sakai and Peltier [1999], where it was
used to simplify certain algebraic manipulations.
[26] As was suggested by an anonymous reviewer, one

can view the differences between the S and P and transport
models, as simply making different choices of transport
functions with the aim of getting different types of ‘typical’
models. In this interpretation the S and P model is an
example of a model in which a stable equilibrium point
coexists with a stable periodic orbit, while the transport
model is an example of a model in which only a single,
globally stable equilibrium point exists, but the THC can be
in either an ‘ON’ or ‘OFF’ state. While we prefer the
interpretation of ‘transport’, we leave the choice of preferred
interpretation to the reader.

4.1. S and P Model Results

[27] In the following we illustrate the effect of stochastic
perturbations by considering a subset of the cases studied by
Sakai and Peltier [1999] and hence fix m = 1. We set (X, Y) =
(%100,45) and (m, b) = (0.5, 1.0) in order to elaborate on
Figure 6 of Sakai and Peltier [1999]. For this set of
parameters it has been shown [Sakai and Peltier, 1999] that
the system has a single, stable equilibrium point (located at
approximately (13.5, 6.5, 6.2)) and a stable limit cycle. The
stable periodic orbit (limit cycle) represents collapse-flush
cycles in which the salinity at low latitudes builds up with
the THC stopped, followed by a period of high THC
transport. In Figure 7 we show both the domain of attraction
of the stable equilibrium point (the shaded, approximately
cylindrical region) and one orbit that tends to the periodic
orbit (in blue). The domain of attraction of the equilibrium
point is constructed by repeated integration with different

Figure 7. Stable periodic orbit (limit cycle), shown in
blue, and the basin of attraction of the single, stable
equilibrium point (shaded) for the S and P model.

Figure 6. Signal to noise ratio versus s/p curves for two
types of memory. The peak that is characteristic of SR is
clearly visible in both cases, however the location of the
peak is a strong function of the memory of the noise, with
longer memory leading to a peak at lower values of s.
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initial conditions. It can be seen that the domain of attraction
of the equilibrium point makes up a small region of the
physically reasonable portion of phase space.
[28] We have subjected (6) to stochastic perturbations in

the high-latitude fresh water forcing Y by employing the
same methodology used above for the one equation model
(3). In Figure 8 we show time series of x versus t with the
initial conditions chosen to lie at the equilibrium point. In
Figures 8a and 8b we use a white noise in time, with s = 1.0
in Figure 8a and 2.0 in Figure 8b. It can be seen that only
the stronger noise forces the orbit away from the equilibrium
point and toward the stable periodic orbit in the time interval
shown. The transition occurs near t = 26. In Figure 8c we
show a noise with a short memory (held for five time steps)
with s = 1.5. It is evident that the orbit is forced away from
the equilibrium point and toward the periodic orbit much
more quickly.
[29] Of course with a Gaussian noise of any nonzero

variance all orbits will be pushed out of the domain of
attraction of the stable equilibrium point provided one waits
long enough (regardless of the type of memory the pertur-
bations exhibit). This observation implies that a better
characterization of phase space behavior as a function
variance can be achieved by considering the waiting time
to leave the domain of attraction of the stable equilibrium
point for trajectories starting at the stable equilibrium point.
In Figure 9 we show waiting times computed from an
ensemble of 10000 trajectories. We show both white noise
and noise with memory. The shape of both waiting time
curves shown is qualitatively similar, with long waiting
times for small s decreasing rapidly with increasing s and

eventually reaching a plateau near zero. However, it can
again be seen that even a fairly weak memory (held for five
time steps in this case) has a profound effect on the
realizability of the destabilization for a given set of param-
eters. In particular, say it was known a priori that s < 2, then

Figure 8. Noise induced destabilization of the stable equilibrium point in the S and P model as
illustrated by x versus t curves: (a) s = 1.0 white noise, (b) s = 2.0 white noise, and (c) s = 1.5 noise with
perfect memory for t = 0.0005, or in other words noise held fixed for five time steps.

Figure 9. Waiting time versus s curves for the destabi-
lization of an orbit starting at the stable equilibrium point of
the S and P model. The noise with memory (perfect memory
for t = 0.0005 in this case) shifts the curve considerably
toward smaller values of s.
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the present results indicate that a white noise model would
not predict destabilization on timescales less than t = 30.
[30] A natural question to ask is whether noise can push

an orbit out of the domain of attraction of the periodic orbit
and to the fixed point. In all the simulations we have run
this has not been found to occur, perhaps because of the
large amplitude variation in x along the periodic orbit
evident in Figures 7 and 8 and the small extent of the
domain of attraction of the equilibrium point as seen in
Figure 7.
[31] In work by Sakai and Peltier [1999] the S and Pmodel

was found to exhibit strong modulation of the periodic
behavior when subjected to both sinusoidal and saw-tooth
perturbations. In Figure 10 we reproduce the results reported
by Sakai and Peltier [1999] for sawtooth perturbations and
contrast them with modulation due to purely stochastic
perturbations. In order to facilitate comparison with work
by Sakai and Peltier [1999] we set (X, Y, m, b) = (100, %41,
0.5, 1.4). Figure 10a shows an unperturbed z versus t time
series. The trips around the periodic orbit (limit cycle) are
clearly visible. Figure 10b shows a stochastically perturbed
z versus t time series (s = 1.5 noise held 10 time steps).
Small variations of the amplitude and period of the oscil-
lations are visible. However, these variations are insignifi-
cant when compared with those in Figures 10c and 10d,
both of which are induced by sawtooth shaped perturba-
tions. In Figures 10c and 10d the saw-tooth perturbation is
shown by a dashed line. The perturbations are not scaled in
amplitude, but are shifted to fit onto the graph. The physical
perturbation consists of a sudden large increase in freshwater
flux (Y becomes more negative) followed by a slow relax-

ation to the undisturbed value (Y = %41). The sudden
increase in freshwater flux is intended to mimic the impact
of the individual Heinrich event that causes the dramatic
shutdown of the NA THC that characterizes each Bond
cycle. As the amplitude of the sawtooth perturbation
increases a modulation like the Bond cycle is clearly visible.
Note also that Figures 10c and 10d indicate that no oscil-
lations exist for very negative Y. These results suggest that it
is the deterministic, as opposed to stochastic, perturbations
that determine whether a modulation occurs. We note that
the EMIC-based study of Timmerman et al. [2003], which
finds a stochastically induced oscillation following a mod-
eled Heinrich event in an ocean–atmosphere–sea ice model,
does not yield a clear Bond cycle [see Timmerman et al.,
2003, Figures 5 and 7].

4.2. Transport Model Results

[32] Recent experiments with the NCAR CCSM in its
fully coupled configuration performed as part of the Pale-
oclimate Modeling Intercomparison Project (PMIP2) sug-
gest that even for extremely strong anomalous freshwater
fluxes into the North Atlantic region (1 Sv for 100 years)
the climate system recovers, after several centuries, to a
state that is very nearly its unperturbed state [Peltier et al.,
2006]. While results for modern climates should not be
cavalierly extrapolated to the glacial climate, at the very
least the modern results suggest that bistable box models
may not be the most appropriate prism through which to
view the millennial-scale oscillations in the North Atlantic
climate. As an alternative, we consider the transport model
(m = 0) with the same set of parameters as the S and P

Figure 10. Attempts to model the Bond cycle using the S and P model, z versus t: (a) unperturbed,
(b) Gaussian, white noise perturbations, (c) deterministic saw tooth perturbation, and (d) large
deterministic saw tooth perturbation.

C10023 STASTNA AND PELTIER: ON BOX MODELS OF THE NORTH ATLANTIC

9 of 15

C10023



model (m = 1), namely (X, Y) = (%100,45) and (m, b) =
(0.5,1.0)). It is a simple exercise in algebra to show that with
this choice of parameters the system (6) has a single equilib-
rium point (found at approximately (13.88,6.435,6.0)) that is
globally stable. In Figure 11 we show the trajectories for
27 different initial conditions. The trajectories are color-
coded according to the value of y(0) and the initial points
in phase space are denoted by open circles. It can be noted
that all the trajectories which pass through the y < 0 region of

phase space tend to the stable equilibrium point along
virtually the same path.
[33] We next consider perturbations to the high-latitude

freshening parameter (Y) of the form (4). In Figure 12 we
show the evolution of x versus time. The sinusoidal portion
of the perturbation is fixed to have (a, T) = (10, 10). The top
two panels have stochastic perturbations that are white in
time. For Figure 12a, in which s = 1, the system executes
small amplitude oscillations around the equilibrium point.
Figure 12a also shows a schematic of the sinusoidal forcing.
In Figure 12b, for which s = 4 the increased noise leads to
episodic large-amplitude excursions from the equilibrium
point that appear quite similar to trips around the periodic
orbit (limit cycle) in the S and P model (Figure 8). In
Figure 12c we consider noise with s = 1, but a longer
memory (10 time steps). It is evident that the increase in
memory allows even weak noise to induce phase locking
with the driving signal.
[34] The apparent phase locking of the large excursions to

the driving signal suggests that the transport model, a system
with a single, globally stable equilibrium point can exhibit
stochastic resonance. This rather surprising result is con-
firmed in Figure 13 where we plot the normalized signal to
noise ratio versus s curves for several combinations of a and
T. In all cases the signal to noise ratio value is normalized by
the maximum value for the (a, T) = (10, 10) case, and the
reader is cautioned to note the change in horizontal scale
between Figures 13a, 13b and 13c. It can be seen that for all
cases shown the signal to noise ratio versus s curve has a
prominent peak (at s* say). A halving of the amplitude with
the period fixed (shown as the dashed line in Figure 13a)

Figure 11. Twenty-seven sample orbits of the transport
model showing the tendency to a single, globally stable
equilibrium point. Colors are used only for presentation
purposes.

Figure 12. Phase locking onto a sinusoidal perturbation due to stochastic perturbations in the transport
model, x versus t shown as solid, black lines, sinusoidal perturbation with (a, T) = (10, 10) schematized
by dashed, black line: (a) s = 1 white noise, (b) s = 4 white noise, and (c) s = 1 noise held 10 time steps.
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leads to a very slight increase in s* and a nearly 50%
decrease in the height of the peak, while a halving of the
period with the amplitude fixed (shown as a dashed line in
Figure 13b) leads to both a substantial increase in s* and
a decrease in the maximum signal to noise ratio value. Not
unexpectedly, given the results shown in Figure 12, adding
even a weak memory to the noise leads to a reduction of
s* by more than 50% and a threefold increase in the
maximum signal to noise ratio value (shown in Figure
13c). This is a striking example of the importance of
having a reliable model of the noise memory when arguing
for the physical applicability of a mechanism such as
stochastic resonance.
[35] As SR is usually presented in terms of dynamics in

bistable potentials (as in our section on the Stommel two-
box model) it is important to identify the mechanism of SR
in the present model. Toward this end, Figure 14 shows the
evolution of 27 trajectories (color-coded as in Figure 11) for
the system (6) with the nonlinear transport terms due to the
THC turned off. In the integrations shown in figure 11 this
corresponds to the governing equations when y < 0. From
Figure 14 we can see (and indeed can confirm by a trivial
analytical calculation) that the trajectories tend to a stable
equilibrium point. Careful inspection of Figure 14, or a
simple calculation of the equilibrium points of (6) with m =
0 and the nonlinear terms switched off, indicates that this
equilibrium point lies in the y > 0 portion of phase space.
This implies, for the full transport model, that any trajecto-
ries entering the y < 0 portion of phase space tend toward a

‘ghost’ equilibrium point found in the y > 0 portion of phase
space. This ‘ghost’ equilibrium point corresponds to an
ocean circulation that is purely diffusive in nature, and for
which high salinities dominate the low-latitude box and

Figure 13. Signal to noise ratio versus s curves showing the existence of SR in the transport model
with a single, globally stable equilibrium point: (a) effect of changes in amplitude of sinusoidal forcing,
(b) effect of changes in period of sinusoidal forcing, and (c) effect of increasing memory of the noise;
note the change in horizontal scale for Figure 13c. The solid line represents the same case for all three
plots.

Figure 14. Twenty-seven sample orbits of the transport
model with the THC turned off (i.e., purely diffusive
model). A single, globally stable equilibrium point exists,
however it occurs at a location with y > 0; hence this
equilibrium point is not a equilibrium point of the full
transport model. Colors are used only for presentation
purposes.
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both the sinking and deep boxes have values that are
slightly larger than the background salinity (in other words
slightly larger than zero). That the trajectories can never
reach this ‘‘ghost’’ fixed point is thus clear, since the
nonlinear terms immediately turn on when y > 0. This
potential well without a equilibrium point thus explains both
the clumping of the trajectories in Figure 11 and the SR
shown in Figures 12 and 13.
[36] While we believe this to be the first demonstration of

stochastic resonance in a simple climate model with a
single, globally stable equilibrium point, we do note that
Timmerman et al. [2003] used a considerably more complex
model (involving ocean, sea ice and atmosphere compo-
nents) to study a form of stochastic resonance for excitable
systems. A detailed comparison between the present model
and that employed by Timmerman et al. [2003] provides
another clear avenue for future work.
[37] For the mathematically minded reader we note that

the jump in the derivative found in (6) is not necessary to
find SR. Indeed the above results can be reproduced with
arbitrary accuracy by replacing H(y) with a smooth function
such as

1þ tan h y
d

# $

2
;

where d specifies how rapid the transition is, and as such is
chosen to be very small. Stastna and Pogson [2007] studied
the mathematical properties of the S and P model from the
point of view of dynamical systems with switching.

[38] The ‘ghost equilibrium point’ mechanism discussed
above suggests that the individual collapse-flush cycles
have an inherent timescale associated with them, much as
individual trips around the periodic orbit (limit cycle) had
an inherent timescale associated with them in the previous
subsection. If this is true, however, then the definition of SR
in terms of the power at the forcing frequency may not be
entirely appropriate when there is a mismatch between the
timescale inherent to the sinusoidal part of the forcing and
the timescale inherent to the flush-collapse cycle. We
demonstrate this by computing the full power spectral
density (PSD) for T = 1 (Figure 15) and T = 60
(Figure 16). In each case we choose three values of s,
one which is well below the peak in the signal to noise ratio
curve, one near the peak, and one well beyond it.
[39] In Figure 15 we show a semilog plot of the PSD for

the case T = 1 versus frequency. Figure 15a shows a
segment of the frequency range that includes the driving
frequency (indicated by a thick, vertical black line). It is
clear the combination of stochastic and sinusoidal perturba-
tions substantially increases the power in the low frequen-
cies. However it is not true that the largest increase occurs at
the driving frequency. The prominent increase in the power
at low frequencies can be seen in Figure 15b, which
considers only the lowest frequencies.
[40] In Figure 16 we show a semilog plot for the opposite

case (T = 60) for which the sinusoidal perturbations have a
period that is much longer than individual flush-collapse
events. As in Figure 15 a significant increase in spectral
power at the low frequencies is evident. In Figure 16b only

Figure 15. (a) Power spectral density for three values of s (white noise); the sinusoidal perturbation has
T = 1. It is clear that the largest noise induced response occurs at frequencies well below the frequency of
the sinusoidal perturbation. (b) Detail of low frequencies.
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the lowest frequencies are shown, with the driving frequen-
cy indicated by a vertical, black line. In this case there is a
clearly visible increase in PSD at the driving frequency,
however this peak is not localized and similar values of the
PSD occur for a range of higher frequencies.
[41] Finally, we wish to draw attention to the fact that

despite their rather similar appearance (compare Figures 8
and 12) the oscillations in the S and P model are intrinsic
and can thus occur with no noise (provided the initial
condition does not lie in the domain of attraction of the
stable equilibrium point), while the oscillations in the
transport model are extrinsic (because the model has a
single, globally stable equilibrium point) and as such
crucially dependent on finite amplitude perturbations (be
they deterministic or stochastic). It is only when the
transport model is subjected to perturbations large enough
to shut down the thermohaline circulation that its inherent
timescale comes into play (as the salinity slowly builds up
in the high-latitude box).

5. Conclusions

[42] At the most elementary level, the results discussed
above indicate that millennial timescale variability can be
reproduced in a variety of extremely simple models. How-
ever, this assertion must be accompanied by the caveat, that
the temporal structure of the stochastic terms in the model
should be determined as part of the modeling exercise, as
even small changes in the memory of the noise can greatly
alter the region of parameter space in which a phenomenon

of interest (e.g., stochastic resonance, destabilization to a
periodic orbit) occurs. This caveat suggests that one should
be particularly careful in extrapolating the results of simple
models to more complex models. In this sense, it is
encouraging that the intrinsic variability scenario, whether
associated with an outright Hopf bifurcation due to changes
in the high-latitude freshening parameter Y (as in work by
Sakai and Peltier [1999]) or a noise-induced destabilization
of an orbit from the neighborhood of a stable equilibrium
point toward a stable periodic orbit that can occur before
any Hopf bifurcation of the stable equilibrium point to a
periodic orbit takes place (as in the above discussion),
agrees well with numerical experiments performed on
models of intermediate complexity (those discussed by
Sakai and Peltier [1997] and references therein).
[43] A similar link of the stochastic resonance hypothesis

to results produced by more complex models has been
asserted by Rahmstorf and Alley [2002] on the basis of
work employing a climate model of intermediate complex-
ity [Ganopolski and Rahmstorf, 2001] of a rather different
form from Sakai and Peltier [1997]. As our results have
shown, some form of stochastically enhanced response is
not unexpected in complex nonlinear models. However, it is
our opinion that the appropriate formalism for ‘stochastic
resonance’ in complex models remains to be worked out.
This is due to the fact that complex models naturally exhibit
complex phase space behavior with inherent timescales that
may not match the timescales of the sinusoidal perturbation
assumed to exist in the SR scenario. The mismatch of
timescales leads to changes in the structure of the power

Figure 16. (a) Power spectral density for three values of s (white noise); the sinusoidal perturbation has
T = 60. It is clear that the largest noise induced response occurs in a broad band of low frequencies, and
not just at the frequency of the sinusoidal perturbation. (b) Detail of low frequencies confirming the broad
peak of spectral power at low frequencies.
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spectrum that are more complex than a simple increase in
power at the driving frequency. Indeed, our results indicate
that the enhanced response at lower frequencies (i.e., a red
noise-like power spectrum) is a much more robust sign of
stochastically enhanced response. It is worth noting that
stochastic resonance has been discussed from a rather
different point of view in the digital acoustics literature
[Wannamaker et al., 2000]. Our above results suggest that
the issue of enhanced response at low frequencies should be
reexamined, since in the case of the transport model SR
does indeed depend on an approximate matching between
the period of the driving frequency and the inherent time-
scales in the model, as is the case for the driven sinusoidal
oscillator.
[44] A second point to consider when assessing the

efficacy of the SR mechanism is how sensitive it is to a
departure from a purely sinusoidal forcing at a single
frequency. In order to clarify this issue we have carried
out simulations in which the deterministic perturbation has a
slowly varying (as opposed to a constant) period. We have
found that even for the bistable model, the standard defini-
tion of stochastic resonance in terms of a signal-to-noise
ratio, such as (5), fails completely for variations in the
period as small as 4%. This is a rather serious criticism, as it
is unlikely that any realistic forcing is composed of a single
sinusoid. Of course even if we do consider a forcing
consisting of only a single sinusoid, we are left with the
Herculean task of finding a physically meaningful forcing
with the correct period. We will not attempt to address this
matter here.
[45] This criticism does not in any way diminish the

importance of the idea of stochastic resonance, or more
generally, stochastically enhanced response. To put it quite
simply, the issue of noise as a model for unresolved scales
and variables in a reduced model cannot be ignored (a point
made earlier by Timmerman and Lohmann [2000]). As
such, the work by Ganopolski and Rahmstorf, [2001]
indicating that stochastic resonance between two NA THC
modes that vary in the physical location of the deep water
production is encouraging. An important step in understand-
ing stochastically enhanced response and stochastic reso-
nance would involve the construction of a simple partial
differential equation based model that would allow a thor-
ough exploration of issues relating to the spatial (as well as
temporal) distribution of the forcing. Toward this direction
the EMIC study of Timmerman et al. [2003] is a useful step
and provides an interesting counterpoint to the far simpler
models presented above.
[46] A final open question is whether a stochastic model

can yield a clear Bond cycle–type modulation. In the above
we were able to induce some modulations of the modeled
D-O oscillations in the S and P model, but such modulations
were almost entirely due to large, deterministic (as opposed
to stochastic) freshwater perturbations (contrast Figures 8b
and 8d).
[47] In closing, we wish to reiterate that stochastic per-

turbations that are not white in time yield significantly
different results from those that are white in time. We
demonstrated this by employing a rather pathological
(though convenient from a programming point of view)
form of fading memory, and confirmed our results using a
Markovian red noise generated by a standard algorithm

[Bartosch, 2001]. An interesting possibility for future work
would involve the development of a physically reasonable
form of fading memory, perhaps based on experiments
performed with more complex models.
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